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Shallow Water Equations (SWE)

o A simplified mathematical model from Navier-Stokes
equations which focus on fluid surface pI‘Oﬂ le.

* Originated from 1D Saint-Venant equations

» Common applications of SWE: Modelling of water flow
* in coastal areas, lakes, estuaries, rivers, reservoirs, open channel flows.

* To study about bore/tidal wave propagation, wave interaction with
bathymetry, stationary hydraulic jump, dam break and flooding,
tsunami generation and propagation



Shallow Water Equations (SWE)

Physical conditions for SWE:
* Free surface

* “shallow":
water depth, h << characteristic length of water body, L

: %< 1073~10~*

* Incompressible flow: Density is independent of Pressure.

In the case where sediment, salinity and pollution are not
considered, density is constant.



Derivation of SWE

* From Navier-Stokes equations (mass and momentum conservation)
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* For constant density, equation (1) becomes

V-(w) =0 €),



Derivation of SWE
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Boundary condition

* At the bathymetry

1. No normal flow into the bathymetry
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* At the water surface
1. No normal flow out of the water surface
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Mass Continuity equation
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Integrating the equation along z from z,, to z
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Mass Continuity equation

Using Leibniz Integral rule on the first 2 terms
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Mass Continuity equation

Introducing depth averaging velocities,
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Momentum Conservation equation(s)

d(pu)

V- (oun) =S
97 + (puu) F

Components for§F
Gravity force (chief force) — surface and bottom slope

Coriolis inertial force

_ . Body Forces
Tide-raising force
Frictional force between the flow and bed
Wind stress

Atmospheric pressure gradient

N v p Wy

Viscosity



Momentum Conservation equation(s)

Taking a more direct derivation with more explicit physical meaning

X Pa  Atmospheric pressure Hydrostatic pressure

Tax Wind stress (x-comp) Tpx Bottom friction (x-
comp)



Momentum Conservation equation(s)

Rate of change of x-momentum of the fluid domain
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Pressure difference between two lateral faces across dx

0x PY dx (17)

Difference in shear stress on the top and bottom faces
Tax — Tpx (18)

Difference in shear stress across dy results in viscous forces

(16)



Momentum Conservation equation(s)

From Newton’s Second Law
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Splitting z; = h + 7z, , dropping last 2 terms, changing equation to
conservation form
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Shallow Water Equations - Components
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Shallow Water Equations - Components

1. Atmospheric Pressure Gradient

* Dominant in storm-surge forecast
* p, Will be modelled as cyclone in terms of r, radius from center of typhoon

2. Surface Wind stress

 Estimated by a semi-theoretical formula, based on similarity hypothesis
proposed by Karman
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3. Bottom Friction

2 2

T n“ghu
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* nis the Manning roughness coefficient

in hydraulics approach



Shallow Water Equations - Components

Body Forces

1. Coriolis inertial force

* Fex =fv, Fcy = —fu
* f =2wsing

2. Tide- raising force

* Newton's universal gravitation exerted on a fluid body and mainly from the
moon and the sun.



SWE RD solver — Literature Review

* Prior to year 2000, most SWE solvers are based on Finite Volume
method.

* M. Ricchiuto, R. Abgrall, H. Deconinck(2007) apply RD method on
SWE achieving second order accuracy for steady cases

* M. Ricchiuto, A. Bollermann (2009) obtained second order accuracy
results with positivity in dry areas

* D.Sarmany, M.E. Hubbard (2013) achieved similar performance in
rotational flow

* D. Sarmany, M. E. Hubbard, M. Ricchiuto (2013) used blended
discontinuous in time scheme, still, results are close to second

order accuracy.



SWE RD solver — Literature Review

* M. Ricchiuto (2015) reported a more efficient version of SWE RD
solver (explicit Lax-Friedrichs) with second order accuracy,
however, cases with irreqular bathymetry reduces the order of
accuracy to first order and is ‘solved’ by using structured grid or
grid adaptation technique.

* There is no SWE RD solver reported that apply the second law of
thermodynamics to ensure entropy consistency in literature.



SWE solver with other methods

* F. Bouchut, T. Morales de Luna (2008) applied entropy satisfying
scheme on SWE but on a FV frame (without eigenvalues)

* U.S. Fjordholm, S. Mishra, E. Tadmor (2011) introduced an energy
stable scheme on SWE, again on FV frame

* N-J. Wy, C. Chen, T-K. Tsay (2016) proposed a weighted-least-
square local polynomial approximation to 2D SWE problems, it is a

meshless scheme but without entropy consistency

* N. Izem, M. Seaid, M. Wakrim (2016) studied on Discontinuous
Galerkin Method on SWE with FV and FE to produce high order

accuracy



RD solver on other equations

* M. Ricchiuto, R. Abgrall (2010) obtained second order accuracy
with unsteady flow on hyperbolic-diffusion equations with mass
lumping technique

* A. Mazaheri, H.Nishikawa (2015, 2016) are working in the similar
equations and Burgers’ equations and claimed to be able to
capture shock more accurately by introducing characteristic-based
nonlinear wave sensor
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