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\' egmi~diserete Finite Pifferegnce
€quation

In the method of lines (semi-discrete method), both the
spatial and temporal discretisation are separable.

The spatial derivative is to be discretised at a chosen time
slab, and only after that the time derivative is considered.

This leads to a system of coupled ordinary differential
equation.




Take 1D advection model equation as an example, by using:
forward-differencing scheme for spatial derivative
three-point central-differencing scheme for time derivative
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Implicit olver

For unsteady scalar advection problem, a more general

equation to represent the problem is

u 5
P u; = F(u, x,t)

where F is a function of the dependent variable u and two

independent variables x and t.

By introducing the n superscript that refers to a discrete time
level,

(u)"™ = F(u™, x",t")




After the discretisation of the equation (using the above

mentioned semi-discrete or method of lines method), the PDE is
reduced to ODE.

The discretised ODE usually forms linear combinations of the
dependent variable and its derivative at various time steps.
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If u™*1 is to be determined, the method is said to be explicit if
a,=0 &% b, =0
and implicit otherwise.




n+1

Consequently, u™™ " represents the solution at the time ¢t + At

Explicit means u™*! depends solely on values already known.
Implicit formulation includes some unknown variables at time
step (t + At ).

Examples of explicit and implicit solver for linear advection.
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The semi-discrete model reads,
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\Otation of O (At?) in equations (6a) and (6b) denote that
the truncation errors is a series starting from At%, At3,---, At™.

To obtain equations (6a) and (6b), one should expand the

Taylor series for the term (%). of equations (5a) and (5b) at
l

1 : : L.
n+; for two-level time discretisation, and

n + 1 for three-level time discretisation.

The Taylor series of u at t,, reads
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u;(t + At) =
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Two-time level
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Two-time level
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