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From Scalar Advection Law to
Euler System

U Jacobian matrix
| M Inflow Matrix (positive and negative)
{E 1 Averaged Jacobian matrix
AT e Ry
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Consider the advection equation for linear PDE:
%;. -
ur+a-"u=20

This equation can be discretised for the numerical calculation using RD
method as following:

Uu: adar
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spatial / steady residual

unsteady residual

The spatial residual is computed as aws
¢" = z ki ;
jer =
where the inflow parameter is =5
1 DLy e
f <t ?ﬂ;‘,_; kj=§a-nj V= A O T
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where U is the primitive variables and the fluxes F(l_i) and G(l_i) are
P pu pvU
= | pU L oaa o oD el puv
o pU FU) = puv G(U) = pv% +p
E u(E + p) v(E + p) ‘

where p is the pressure
1
p=@-1 [E —5p@® + vz)]
Euler’s System is in a more general form called the conservation law.

Eqg. (1) : conservation of mass

Eqg. (2) : conservation of momentum in x-direction
Eq. (3) : conservation of momentum in y-direction
conservation of energy




In fact, advection problem is just a specific case for conservation la

% Letuslink the linear advection problem to Euler’s system:

Euler’s system Linear Advection

U, + E(U) + G,(U) =0 U +d-Vu=0

. 9F(U)oU
U, + (W)

oG(0) ol ou ou
n ()OU_O ut+axa+ay@=0

oU 0x  9Uu 9y

- The analogy of the “fluxes’ speed” in Euler’s system is called the Jacobian.




The Jacobian matrix can be found as following:

p Uy
- pu 13 Uz
% U_ pU 'E U3
E U,
fl(l‘—i) 91(17)
e f(U) ([ 92(0)
F(U) = = G\U) = L)
) £(0) ) g3(U)
f4(U) 94(0)
94(B) " a5k) 5 ) FaflE
Al Ol s SeioUA
L | 26@) 06(0) 0n(0) 9£4(D)
oF(U) _| au; oU, U, oU,
U afg(ﬁ) afs(ﬁ) 6f3(l7) 6f3((7)
QUL L v P Ol
\af4(l7) ofi(U) 9£(0) af(0) ]
e gl 005 00

Similar procedure
lies f aG(U)
applies for —==

r: -

-|'I:|rl‘ Ii- - -."



IfloviVHriXx ; fa BEle'sSaen

%
inflow matrix: Kj = EA |7 | inflow parameter: k; = E& -1
. OF (U 0G(U e e
Jacobian: A= a(ﬁ )Tlx + a(ﬁ )ny Speed: a=a,l+ayj
The Jacobian matrix is given as
/ 0 N, ny, 0
1
2 y —Dg*ne—ui-n1 —(y—2un,+u-1 —(—Dvn,+un, F—1n,
= | 1
E(y =1Dg*ny' = vii -0 Sy = Dun, ¥ on it~ 2un, e y— 1)1
1
\ﬁ-ﬁ[z(y—l)qz—H] Hn,— (y—Dui-n Hn,—(y—1Dvi-n yu-n /
tr “:l_..n. & S -H 5 + E
ﬁ ") where H is the enthalpy, H = Sk
N\ %13 (/) p
SN S j— q* = u* +v? T
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inflow matrix:  K; = EA |17ij| inflow parameter: k; = E& - N

For the LDA scheme, the distribution coefficient is given as:

Ikt
l
B S F ki = max(0, k;)
Ljerk;
J o da
3
Joil
Jieri2
One-target case 3
Two-target case =
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The quesfion now is how to find the corresponding positive and
negative inflow matrix for Euler’s system?

KT R

Euler’s system is a hyperbolic PDE because its Jacobian matrix is diagonalisable

A matrix is said to be diagonalisable iff

B =66
where D is a diagonal matrix i i ,”

¥ vEE

A =RAR™!

A is the Jacobian,
R is the right eigenvectors,
A is an diagonal matrix which its diagonal entries are the eigenvalues

The Jacobian matrix can be expressed as an eigenvalue problem:

AR® = 3,R®
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There are 4 eigenvalues and therefore 4 eigenvectors, arranged |
increasing magnitude of the eigenvalues give

A oniscO0E=4
=1 %z 0o 0 R = (RD,R® R® R®)
0O 0 A3 O
0 =0 Vs sl
where shse it
M=uU-n—c Ah=A3=u-n A, =u-n+c
1 0 1 1
Uu—cn, —n, u ROy
R=| v—cn,y Ny % v +cn,,
u? + v? e
H—-cu-n —uny,+vn, > H+cu-n

1
where c is the sound speed and is given by : c2.=(=1) [H = qul

R~ 1is the inverse of the right eigenvectors or just simply
known as the left eigenvectors.
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Euler’s system Linear Advection

inflow matrix: K; = EA |7 ] inflow parameter: k; = E& S
At = RATR™1 SRR, fl:'ﬁj
e B e ,
A~ =RAR™ *
pans ] lf 3 e ﬁ] 0
] . Sy
0 if a-n=0

The distribution matrix then becomes:

B; = K;* (ZK+>

JET

and the total spatial residual of an element is:

= §§ [.(0) + G, (@)ldxdy = §p [F(@)dy + G(T)d]
:.i. f‘.,'é’;) J Z[F(U)"'G(U)] gy

;' JET
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% In scalar advection problem (both linear advection and Burger’s equation),
the speed vector has to be assumed constant in each element so that the RD
scheme is conservative.

=X

a, +d, + ds
3

Qul

Je=ul

This in turn implies that all the primitive variables of Jacobian A must
be assumed to be constant within each element T.




Eigenvalues: | ), =U-H—¢C b=l =u-7 =U-1
- 1 0 1 1
Right U — CNy —n, U i+ cn,
Eigenvectors: R = vV —cn,, M, v U+ cn,,
LA 7. 2 Tl 1 ol S e A
H—-cu-n —uny,+vn, > H+cu-n
First of all, find the averaged value for all the terms contained in the primitive
variables:
A T A Cuug Pt ud i, Fvge S Bk By S
e s i o o

- and the use these averaged values to compute for the following variables:

e ] 5+ E B, E
15=(y—1)[E—§p‘(a2+172)] H:ﬂ G- = u* + v*
p
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TEUA; \ jET
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B; —K+<2K+> CIJT=EZ[F(U])+G U;)| -7
JET JET
gntl _ gn
s i Yl Bl

z <2 Mij At G > = identity matrix
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A lf 1_: r_ :‘J Mij — ?31(5111 + 1 —B])
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% The semi-discrete model for scalar advection problem reads,

1
i S s 1
‘ L4+ 0(At?) +[d-vu]"z =0
At
: : : . il
The expansion of the Taylor’s series at time level n + i to preserve the il

second order accuracy in the discretisation of time derivative.

In previous presentation, where the advection speed for Burgers’ equation
a(u) depend on u and it varies with time:

1..n41

>_‘ S‘mT 5 e u e IB 2(¢T(un+1)+¢T(un))

At
TEUA; \ jET




In actual case, implicit scheme with mass matrix should be impleme
as follow

%y
n

T,n+1u?Jr1 Tn Ui s g N 4T (1
3 (3 (e - ) ey o)

TEUA; \ JET

The mass matrix is constructed based on the assumption of linear
preserving scheme.

Examples of RD framework for unsteady case using mass matrix are:

Rossiello:
UCV, LDA, monotone FCT procedure

Ricchiuto, Abgrall :
LDA, blended LDA-N, SU, central-blended (with Lax-Friedrich’s dissipation)

All these scheme are linear preserving.




Linear preservation means that the distribution coefficient must be
» bounded.
- 0<p<1

The linear preserving property of the distribution coefficient will

ensure the existence of mass matrix miTj

Streamline upwind mass matrix
5 [fT@=BD pIG-pD) BI(1-pD)
mij=— B (A-p1) B2 (2-p7) B1(1—p5)
BB BI(A—B7) BIQ2—pB3).




Example of Study Case:
Advection of Vortex

" O Description of the test case
- Numerical results

Yot
A B4l =
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U, + E,(U) +G,(U) =0

oy P pu
7| PU s [ puiE
Vs pv F(U) = pUV
E u(E +p)
T .'\
0.5

Density is assumed to be constant
throughout the domain

0.5 7‘ _5_5 p=1.4

The centre of vortex is initially set to be

| (xc: yc) = (0,0)

= \/(x = xc)z e ()’ =7 yc)z




h The flow velocity is given as
B =By, + B,

¥ Mean stream velocity: v, = (6,0)

Circumferential perturbation:

5 _ )15(cos(4nr) + D(=(r — yo), (x — x0)), r < 0.25
A 0 ; otherwise

150 The pressure is given as

P =DPmtDp
= _J Ap , 1r<0.25
bl P {0 , otherwise
E _ cos(8mnr) j i
Ap = (@n)? 2 cos(4nr) + 8nr sin(4nr) + 3 + nr sin(8nr) + 12nr< |+ C

' N C = —11.02544849
K] {-‘ o1
]
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Global time step: At = minAt

S; i
Ati o ZTeuAi at v EI?E%"X(HUJ i3 Cj“)lnjl
o {-ii?"i?’%b C] = m
e ) Pj




Advection of vortex:

% N

periodic BCs et

-0.5

The centre of vortex has to be
20 shifted as time elapsed:
b % I
U = U, (Xc) Ye) = At Uy
fixed

Unknown, and the pressure is to be calculated from
1 :
gAY k) E—gp(u2+v2)] 5
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