Unsteady Scalar Conservation Law: Implicit & Explicit

Group of Computational Fluid Dynamics School of Aerospace Engineering Universiti Sains Malaysia 25th May 2016. Presenter : Neoh Soon Sien Supervisor : Dr. Farzad Ismail

1) Implicit Five-Stage Runge-Kutta Method

2) Implicit Scheme for Circular Advection & Burgers' Equation

3) Explicit Runge-Kutta for Time-Dependent Problem

 \cdot In this section, we will discuss about the implicit five-stage Runge-Kuttamethod. (A. Jameson 1991)

IT Implicit Five-Stagehod

***** Next, we will investigate the implicit scheme with pseudo-time iteration without the five-stage Runge-Kutta subiterations. (Rossiello et al.)

Implicit Five-Stage Runge-Kutta Method

This method is originally proposed by A. Jameson in year 1991. Scalar conservation law is given by

$$
\frac{\partial u}{\partial t} + \vec{a} \cdot \nabla u = 0
$$

In **linear advection** problem, \vec{a} is always constant for all time step.

Two time-level
\n
$$
\sum_{T \in \Delta_i} \sum_{j \in T} m_{ij}^T \frac{u_j^{n+1} - [u_j^n]}{\Delta t} + \frac{1}{2} \sum_{T \in \Delta_i} \beta_i^T (\phi^{T,n+1} + \phi^{T,n}) = 0
$$
\nThree time-level
\n
$$
\sum_{T \in \Delta_i} \sum_{j \in T} m_{ij}^T \frac{3u_j^{n+1} - 4u_j^n}{2\Delta t} + \sum_{T \in \Delta_i} \beta_i^T \phi^{T,n+1} = 0
$$

In **non-linear** advection problem, \vec{a} changes with time.

Two time-level
\n
$$
\sum_{T \in \Delta_i} \sum_{j \in T} \left(m_{ij}^{T,n+1} \frac{u_j^{n+1}}{\Delta t} - m_{ij}^{T,n} \frac{u_j^{n}}{\Delta t} \right) + \sum_{T \in \Delta_i} \left(\frac{1}{2} \beta_i^{T,n+1} \phi^{T,n+1} + \frac{1}{2} \beta_i^{T,n} \phi^{T,n} \right) = 0
$$
\nThree time-level
\n
$$
\sum_{T \in \Delta_i} \sum_{j \in T} \left(m_{ij}^{T,n+1} \frac{3u_j^{n+1}}{2\Delta t} - m_{ij}^{T,n} \frac{2u_j^{n}}{\Delta t} + m_{ij}^{T,n-1} \frac{u_j^{n-1}}{2\Delta t} \right) + \sum_{T \in \Delta_i} \beta_i^{T,n+1} \phi^{T,n+1} = 0
$$

$$
u^{n-1}
$$
\n
$$
u^{n+1}
$$
\n
$$
u^{n+2}
$$
\n
$$
u^{n+1}
$$
\n
$$
u^{n+2}
$$
\n
$$
u^{n+1}
$$
\n
$$
u^{n+2}
$$
\n
$$
u^{n+1}
$$
\n

 S_T

In **linear advection** problem:

Two time-level
$$
R(u^{(l)}) = \sum_{T \in \Delta_i} \sum_{j \in T} m_{ij}^T \frac{u_j^{(l)} - u_j^n}{\Delta t} + \frac{1}{2} \sum_{T \in \Delta_i} \beta_i^T (\phi^{T,(l)} + \phi^{T,n})
$$

Three time-level
$$
R(u^{(l)}) = \sum_{T \in \Delta_i} \sum_{j \in T} m_{ij}^T \frac{3u_j^{(l)} - 4u_j^n}{2\Delta t} + \frac{u_j^{n-1}}{2\Delta t} + \sum_{T \in \Delta_i} \beta_i^T \phi^{T,(l)}
$$

In **non-linear** advection problem:

Two time-level
$$
R(u^{(l)}) = \sum_{T \in \Delta_i} \sum_{j \in T} \left(m_{ij}^{T,(l)} \frac{u_j^{(l)}}{\Delta t} - m_{ij}^{T,n} \frac{u_j^{n}}{\Delta t} \right) + \sum_{T \in \Delta_i} \left(\frac{1}{2} \beta_i^{T,(l)} \phi^{T,(l)} + \frac{1}{2} \beta_i^{T,n} \phi^{T,n} \right)
$$

Three time-level
$$
R(u^{(l)}) = \sum_{T \in \Delta_i} \sum_{j \in T} \left(m_{ij}^{T,(l)} \frac{3u_j^{(l)}}{2\Delta t} - m_{ij}^{T,n} \frac{2u_j^{n}}{\Delta t} + m_{ij}^{T,n-1} \frac{u_j^{n-1}}{2\Delta t} \right) + \sum_{T \in \Delta_i} \beta_i^{T,(l)} \phi^{T,(l)}
$$

Implicit Method (without the Five Stage Runge-Kutta Method)

Physical and Pseudo-time steps:

$$
\Delta t_i^* = \Delta t_i = CFL \frac{2}{3} \min_{T \in \Delta_i} \frac{S_T}{\sum_{j \in T} k_j^+}
$$

Implicit Scheme for Circular Advection & Burgers' Equation

- ❖ Study the validity of implicit scheme with and without the five-stage Runge-Kutta sub-iterations.
- \triangleleft Investigating the implicit scheme for twotime-level and also three-time-level of the time derivatives discretisation.

Circular Advection

$$
\frac{\partial u}{\partial t} + (-2\pi y) \frac{\partial u}{\partial x} + (2\pi x) \frac{\partial u}{\partial y} = 0
$$
\nIn spatial domain of\n
$$
\Omega = [-1,1] \times [-1,1]
$$
\nInitial Condition:\n
$$
u(r, 0) = \begin{cases} \cos^2(2\pi r), & \text{if } r \le 0.25 \\ 0, & \text{if } r > 0.25 \end{cases}
$$
\n
$$
r = \sqrt{(x + 0.5)^2 + y^2}
$$
\nBoundary Condition:\n
$$
u(r, t) = 0
$$
\nfor\n
$$
(x, y) \in \partial \Omega
$$

By increasing the CFL numbers from 0.9 to 5.0, there will be some effects on the L2 and L1 errors.

The contour plot and the cross-sectional plot for 100×100 diamond grid are plotted.

Types of Solution

Weak Solution or Generalised Solution

- For some test case there is only *weak solution* but no *classical solution*.
- This is because the analytical (or exact) solution *might not be*
	- i. continuous
	- ii. smooth (differentiable)
- Riemann's problem is one typical example which has weak solution only.
- **The weak solution exist as long as it fulfils the following conditions:**
	- i. at points of continuity

$$
\frac{\partial u}{\partial t} + \nabla \cdot \vec{F} = 0
$$

ii. at points of discontinuity – $\it jump~(shock)$ condition

$$
-s(u^- - u^+) + (F^- - F^+) = 0
$$

or

$$
s(u^- - u^+) = (F^- - F^+)
$$

E In gas dynamics, this jump (shock) condition is known as **Rankine-***Hugoniot* condition.

Two general test cases of Riemann's problem:

- For some test case there is only *weak solution* but no *classical solution*.
- The analytical (or exact) solution *must be*
	- i. continuous
	- ii. smooth (differentiable)
- Only PDE with classical solution can be used for the second order accuracy test.
- **Examples are fully expansive waves, and their initial data are:**

Burgers' Equation – Linear Initial Data

$$
\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + u \frac{\partial u}{\partial y} = 0
$$

Spatial domain: $\Omega \in [0, 1]^2$ $u(x, y, 0) =$ $x +$ 2 **Time domain:** $t \in [0, 1]$ **Initial data:** $u(x, y, 0) = \frac{x + y}{2}$ **Final Solution:** $u(x, y, 1) =$ $x +$ 4 **Boundary conditions on** $\partial \Omega$ for all $t \in (0, 1]$: $u(x, y, t) =$ $x +$

 $2 + 2t$

The initial condition and exact final solution for 100×100 diamond grid are given for linear test case.

Burgers' Equation – Quadratic Initial Data **Spatial domain:** $\Omega \in [0, 1]^2$ $u(x, y, 0) =$ $x +$ 2
, 2 **Time domain:** $t \in [0, 1]$ **Initial data: Final Solution:** $u(x, y, 1) = \left(-\frac{1}{2}\right)$ $\frac{1}{2}$ + 1 $\frac{1}{2} \sqrt{1 + 2(x + 1)}$ 2 **Boundary conditions on** $\partial\Omega$ for all $t \in (0, 1]$: $u(x, y, t) = \left(-\frac{1}{2},\right)$ $\frac{1}{2}$ + 1 $\frac{1}{2 t} \sqrt{1 + 2 t (x +$ 2 \boldsymbol{u} \rightarrow x, y $|t = 0|$ 1 1 \mathcal{U} \blacktriangleright χ , γ $|t = 1|$ 1 1 ------------------2 ∂u $\frac{dt}{ }$ $+ u$ ∂u $\frac{dx}{x}$ $+u$ ∂u $\frac{d}{ }$ $= 0$

The initial condition and exact final solution for 100×100 diamond grid are given for quadratic test case.

 \cdot **This is the work proposed by Ricchiuto &** Abgrall (2010).

Expire Dependent Problem

❖ The explicit scheme can be implemented in two ways, either two-stage Runge-Kutta or three-stage Runge-Kutta intermediate steps. We will emphasise only on he former.

Explicit Two-Stage Runge-Kutta Method

Circular Advection

The contour plot and the cross-sectional plot for 100×100 diamond grid are plotted.

Burgers' Equation – Linear Initial Data

Burgers' Equation – Quadratic Initial Data

