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FE, FV & RD for Steady Case
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Finite Element

uh
T
=∑
j∈T

ψ
T
( x , y )u j

 Step 1 : Multiply the governing equation with 
a weight function and integrate over the 
triangular element. Using weak formulation 
and integration by parts to reduce the order 
of partial differential equation.

 Step 2 : Assembly all the elements and form 
n equations for n nodes in the domain.

 Step 3 : Solve the simultaneous system of 
equation.

Bonus
 Connect all the approximate value at 

intersection points using Lagrange 
interpolation
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Finite Volume
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First-order accurate scheme

Second-order accurate scheme

 Step 1 : Create triangular 
primary elements and median 
dual cell.

 Step 2 : Emphasize on median 
dual cell. Equate the flux leaving 
the median dual cell is balanced 
out by the flux entering the 
median dual cell.

Stopping criteria :
flux leaving = flux entering



  

Residual Distribution
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 Step 1 : Create triangular 
primary elements.

 Step 2 : Calculate flux residual 
or flux fluctuation

 Step 3 : Distribute the residual 
or split the fluctuation according 
to characteristic speed. 
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Driving mechanism :
If the residual is not zero, just 
distribute it.

Stopping criteria :

λ



  

Residual Distribution for Time-Dependent
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Unsteady Case ∂u
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Driving the residual within each element 
T towards zero.
Eventually, the fluctuation approaches 
zero. 

The residual at every single time step is 
no longer be zero, but some other 
values.



  

Time Discretization
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Therefore, in time-dependent cases, the spatial flux 
has to be evaluated, and then updated with proper 
time-marching scheme.
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Flux Residual
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The flux residual is 
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The convention of inward scaled normal in RD to calculate flux 
residual is equivalent to evaluating the average of the flux across 
every single edge..
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Distribution Coefficient & Temporal Update

Space-centered
(Galerkin type) Upwind LDA
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RD in Three Dimension
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The flux residual is 

s j is the inward scaled normal, with magnitude equal to the plane area.
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tetrahedron



  

Mesh Generation

Mesh in 2D Mesh refinement

Meshing in 3D

Right-running grid (RR grid)



  

Distribution Coefficient & Temporal Update

Space-centered
(Galerkin type) Upwind LDA
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Possible Test Cases?

∂u
∂ t +λ⋅∇ u=0

The solution must fulfill the governing equation 

One example that we can think of is

λ x k x+λ yk y+λ z k z=ω

provided that

u (x , y , z , t)=u0 cos(k x x+k y y+k z z−ω t)

u (x−ct )


