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Introduction

Focus is to incorporate viscous terms in the residual-distribution
scheme

Investigated in the context of 2-dimensional advection-diffusion
problems

ut + aux + buy = ν(uxx + uyy ) (1)

The semi-discrete form of the governing equation for node i is of the
form:

Si
dui
dt

+
∑
T∈Vi

(φTi ,inv + φTi ,vis) = 0 (2)

There are different approaches to evaluate the viscous component of
the residual for each cell
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Viscous Component of Fluctuation Splitting

Begin with usual residual distribution approach for a triangle

φTvis = −
∫∫

T
ν(uxx + uyy ) dx dy (3)

Using Gauss’s theorem,

φTvis = −
∮
∂T
ν∇u. dn (4)

Since the solution is assumed to vary linearly over each triangle, the
gradient for a triangle is constant

This results in φTvis = 0 for the triangle
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Viscous Component of Fluctuation Splitting

Therefore we need a higher-order reconstruction and extension of the
computational stencil are required to recover the ∇u on the boundary

There are generally 2 alternatives

Nodal gradients - using Least Squares approach
Edge based gradients - using an arithmetic average approach with
neighbouring triangle to recover the gradients at the midpoint

However these approaches have the disadvantage of a larger stencil

Another approach will be considered to keep the stencil compact
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Viscous Component of Fluctuation Splitting

Consider the median dual cell Si

Figure: Median dual cell around node i
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Viscous Component of Fluctuation Splitting

Solve, ∫∫
Si

ν(uxx + uyy ) dx dy =

∮
∂S i

ν∇u. dn (5)∮
∂S i

ν∇u. dn =
∑
T∈Vi

∮
∂S i∩T

ν∇u. dn (6)

Where the boundary ∂Si ∩ T for each triangle T , is composed of 2
segments with outward scaled normals n1ext,n

2
ext such that,

n1ext + n2ext = −1

2
ni (7)
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Viscous Component of Fluctuation Splitting

Thus, ∫∫
Si

ν(uxx + uyy ) dx dy =
∑
T∈Vi

ν

2
∇u.ni (8)

Where for a triangle T ,

∇u =

∑3
p=1 upnp

2ST
(9)

Note that the expression produced by the Galerkin method is identical

Now the scheme is compact and a viscous component of the residual
distribution for each triangle can be written equivalently as,

φTi ,vis =
1

2
ni.ν

3∑
p=1

upnp
2ST

(10)
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Viscous Component of Fluctuation Splitting

viscous term also has an influence on the time-step restriction, which
becomes,

CFL
Si

∆ti
=

∑
T∈Vi

1

restri iinv + restri ivis
(11)

Where restri ivis is the diffusive time-step restriction (determined by
positivity of the scheme), which is given by:

restri ivis =
ν‖ni‖2

4ST
(12)
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Viscous Residual Solver Validation

Validation for the viscous residual using Galerkin approach for 201
nodal points in x and y directions and Dirichlet boundary conditions
for the pure diffusion problem with ν = 1.

Where
uleft = ubottom = 0 (13)

uright = sin(πy), utop = − sin(πx) (14)

Solving a pure diffusion problem for the domain −1 ≤ x ≤ 0 and
1 ≤ y ≤ 0

The analytic solution is:

u(x , y) =
1

sinhπ
[sinh(π(x + 1))sin(πy) + sinh(πy)sin(π(x + 1))] (15)
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Grid

Right running grid with skewness = 0.3

Figure: Close-up of the grid
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Viscous Residual

Numerical solution with skewness = 0.3

Figure: Exact solution Figure: Numerical solution
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Results

Comparison of the exact and numerical solution for 3 different y slices.

Figure: Comparison of the exact and
numerical solution for y = 0.25

Figure: Comparison of the exact and
numerical solution for y = 0.50
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Results

Figure: Comparison of the exact and numerical solution for y = 0.75
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Results - Linear Advection-Diffusion Equation

Solving for the domain 0 ≤ x ≤ 1 and 1 ≤ y ≤ 0 with ν = 0.1 and
a = 7.0, b = 4.0

Using Dirichlet boundary conditions from the exact solution

The exact solution is given as:

u(x , y) = − cos(πη) exp[0.5ξ(1−
√

1 + 4π2ν2)/ν] (16)

Where
η = bx − ay (17)

ξ = ax + by (18)
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Results - Linear Advection-Diffusion Equation

Inviscid residual computed using classic LDA scheme with grid
skewness of 0.3

Figure: Exact solution for the linear
advection-diffusion equation

Figure: Numerical solution with 101
nodes in x and y direction
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Results - Linear Advection-Diffusion Equation

Figure: Numerical solution with 201
nodes in x and y direction

Figure: Numerical solution with 301
nodes in x and y direction
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Results - Linear Advection-Diffusion Equation

Figure: Numerical solution with 401 nodes in x and y direction
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Results - Linear Advection-Diffusion Equation

Comparison of the exact and numerical solution for 3 different y slices
for 201 nodes in x and y directions.

Figure: Comparison of the exact and
numerical solution for y = 0.025

Figure: Comparison of the exact and
numerical solution for y = 0.15
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Results - Linear Advection-Diffusion Equation

Comparison of the exact and numerical solution for 2 different x slices.

Figure: Comparison of the exact and
numerical solution for x = 0.015

Figure: Comparison of the exact and
numerical solution for x = 0.95
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Results

Figure: Comparison of the exact and numerical solution for y = 0.75 for 401 nodes
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Order of Accuracy

Grid Spacing L2-Norm Error Order of Accuracy

0.010 2.19E-03 2.020323697
0.005 5.34E-04
0.0033 2.37E-04
0.0025 1.33E-04

Table: Advection

Grid Spacing L2-Norm Error Order of Accuracy

0.010 2.04E-03 0.950064625
0.005 1.07E-03
0.0033 7.22E-04
0.0025 5.46E-04

Table: Advection-Diffusion
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Order of Accuracy for different skewness

Skewness Order of Accuracy

0.3 0.950064625
0.4 0.847073513
0.5 0.744171265

Table: Order of Accuracy for Advection-Diffusion
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L2-Norm Error Comparison

Grid Spacing Classic LDA Weighted K Approach LDA

101 2.04E-03 1.17E-03
201 1.07E-03 6.17E-04

Table: L2-Norm Error Comparison
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