Residual Distribution Schemes for Parabolic Equations

Vishal Singh

University Science Malaysia

September 9, 2015

Vishal Singh (USM)

RD Schemes with Viscous Term

September 9, 2015 1 / 25

э

< 67 ▶

æ

- Focus is to incorporate viscous terms in the residual-distribution scheme
- Investigated in the context of 2-dimensional advection-diffusion problems

$$u_t + au_x + bu_y = \nu(u_{xx} + u_{yy}) \tag{1}$$

• The semi-discrete form of the governing equation for node *i* is of the form:

$$S_i \frac{du_i}{dt} + \sum_{T \in V_i} (\phi_{i,inv}^T + \phi_{i,vis}^T) = 0$$
⁽²⁾

• There are different approaches to evaluate the viscous component of the residual for each cell

Begin with usual residual distribution approach for a triangle

$$\phi_{vis}^{T} = -\iint_{T} \nu(u_{xx} + u_{yy}) \, dx \, dy \tag{3}$$

• Using Gauss's theorem,

$$\phi_{vis}^{T} = -\oint_{\partial T} \nu \nabla u. \, d\mathbf{n} \tag{4}$$

• Since the solution is assumed to vary linearly over each triangle, the gradient for a triangle is constant

• This results in
$$\phi_{vis}^T = 0$$
 for the triangle

- Therefore we need a higher-order reconstruction and extension of the computational stencil are required to recover the ∇u on the boundary
- There are generally 2 alternatives
 - Nodal gradients using Least Squares approach
 - Edge based gradients using an arithmetic average approach with neighbouring triangle to recover the gradients at the midpoint
- However these approaches have the disadvantage of a larger stencil
- Another approach will be considered to keep the stencil compact

Viscous Component of Fluctuation Splitting

• Consider the median dual cell S_i

Figure: Median dual cell around node *i*

Vishal Singh (USM)

• Solve,

$$\iint_{S_{i}} \nu(u_{xx} + u_{yy}) \, dx \, dy = \oint_{\partial S_{i}} \nu \nabla u. \, d\mathbf{n}$$

$$\oint_{\partial S_{i}} \nu \nabla u. \, d\mathbf{n} = \sum_{T \in V_{i}} \oint_{\partial S_{i} \cap T} \nu \nabla u. \, d\mathbf{n}$$
(5)

Where the boundary ∂S_i ∩ T for each triangle T, is composed of 2 segments with outward scaled normals n¹_{ext}, n²_{ext} such that,

$$\mathbf{n}_{\mathsf{ext}}^{1} + \mathbf{n}_{\mathsf{ext}}^{2} = -\frac{1}{2}\mathbf{n}_{\mathsf{i}} \tag{7}$$

Viscous Component of Fluctuation Splitting

• Thus,

$$\iint_{S_i} \nu(u_{xx} + u_{yy}) \, dx \, dy = \sum_{T \in V_i} \frac{\nu}{2} \nabla u.\mathbf{n_i} \tag{8}$$

• Where for a triangle *T*,

$$\nabla u = \frac{\sum_{p=1}^{3} u_p \mathbf{n_p}}{2S_T} \tag{9}$$

- Note that the expression produced by the Galerkin method is identical
- Now the scheme is compact and a viscous component of the residual distribution for each triangle can be written equivalently as,

$$\phi_{i,vis}^{T} = \frac{1}{2} \mathbf{n}_{i} \cdot \nu \sum_{p=1}^{3} \frac{u_{p} \mathbf{n}_{p}}{2S_{T}}$$
(10)

Viscous Component of Fluctuation Splitting

 viscous term also has an influence on the time-step restriction, which becomes,

$$CFL\frac{S_i}{\Delta t_i} = \sum_{T \in V_i} \frac{1}{restri_{inv}^i + restri_{vis}^i}$$
(11)

• Where *restriⁱ_{vis}* is the diffusive time-step restriction (determined by positivity of the scheme), which is given by:

$$restri_{vis}^{i} = \frac{\nu \|\mathbf{n}_{\mathbf{i}}\|^{2}}{4S_{T}}$$
(12)

- Validation for the viscous residual using Galerkin approach for 201 nodal points in x and y directions and Dirichlet boundary conditions for the pure diffusion problem with $\nu = 1$.
- Where

$$u_{left} = u_{bottom} = 0 \tag{13}$$

$$u_{right} = \sin(\pi y), u_{top} = -\sin(\pi x)$$
(14)

- Solving a pure diffusion problem for the domain $-1 \le x \le 0$ and $1 \le y \le 0$
- The analytic solution is:

$$u(x,y) = \frac{1}{\sinh \pi} [\sinh(\pi(x+1))\sin(\pi y) + \sinh(\pi y)\sin(\pi(x+1))]$$
(15)

• Right running grid with skewness = 0.3

RD Schemes with Viscous Term

æ

Viscous Residual

• Numerical solution with skewness = 0.3

Figure: Exact solution

Figure: Numerical solution

- 一司

Vishal Singh (USM)

September 9, 2015 12 / 25

Results

Comparison of the exact and numerical solution for 3 different y slices.

Figure: Comparison of the exact and numerical solution for y = 0.25

Figure: Comparison of the exact and numerical solution for y = 0.50

Figure: Comparison of the exact and numerical solution for y = 0.75

September 9, 2015

< 4 →

14 / 25

- Solving for the domain $0 \le x \le 1$ and $1 \le y \le 0$ with $\nu = 0.1$ and a = 7.0, b = 4.0
- Using Dirichlet boundary conditions from the exact solution
- The exact solution is given as:

$$u(x,y) = -\cos(\pi\eta)\exp[0.5\xi(1-\sqrt{1+4\pi^2\nu^2})/\nu]$$
(16)

Where

$$\eta = bx - ay \tag{17}$$

$$\xi = ax + by \tag{18}$$

 Inviscid residual computed using classic LDA scheme with grid skewness of 0.3

Figure: Exact solution for the linear advection-diffusion equation

Figure: Numerical solution with 101 nodes in x and y direction $\langle z \rangle$

Vishal Singh (USM)

September 9, 2015 16 / 25

Figure: Numerical solution with 201 nodes in x and y direction

Figure: Numerical solution with 301 nodes in \times and y direction

Figure: Numerical solution with 401 nodes in x and y direction

Vishal Singh (USM)

RD Schemes with Viscous Term

September 9, 2015

18 / 25

Comparison of the exact and numerical solution for 3 different y slices for 201 nodes in x and y directions.

Figure: Comparison of the exact and numerical solution for y = 0.025

Figure: Comparison of the exact and numerical solution for $y_{\equiv}=0.15$

Vishal Singh (USM)

RD Schemes with Viscous Term

September 9, 2015 19 / 25

Comparison of the exact and numerical solution for 2 different x slices.

Figure: Comparison of the exact and numerical solution for x = 0.015

Figure: Comparison of the exact and numerical solution for x = 0.95

A D > A A P >

Results

Figure: Comparison of the exact and numerical solution for y = 0.75 for 401 nodes

September 9, 2015

< 4 ► >

21 / 25

æ

Order of Accuracy

Grid Spacing	L2-Norm Error	Order of Accuracy
0.010	2.19E-03	2.020323697
0.005	5.34E-04	
0.0033	2.37E-04	
0.0025	1.33E-04	

Table: Advection

Grid Spacing	L2-Norm Error	Order of Accuracy
0.010	2.04E-03	0.950064625
0.005	1.07E-03	
0.0033	7.22E-04	
0.0025	5.46E-04	

Table: Advection-Diffusion

Vishal Singh (USM)

3

Skewness	Order of Accuracy
0.3	0.950064625
0.4	0.847073513
0.5	0.744171265

Table: Order of Accuracy for Advection-Diffusion

Grid Spacing	Classic LDA	Weighted K Approach LDA
101	2.04E-03	1.17E-03
201	1.07E-03	6.17E-04

Table: L2-Norm Error Comparison

Thank You

< 67 ▶

æ