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@ Basic Proof
© Flux-Difference Approach Proof

© Avrtificial Signals Proof
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@ The Linear Preserving (LP) property requires the scheme to preserve
the exact steady state solution when the solution varies linearly in
space for arbitrary grids

@ A scheme that is LP will guarantee second-order accuracy for spatial
discretization at steady state

@ Recall the update for node /

At
n+1 _  .n T,T
u; —ui+?25i¢ (1)

"Tey,

@ where ¢7 is the total residual and f; is the distribution coefficient
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Basic Proof 2

At steady state, is we substitute the exact solution at the nodes, we
get 7 =0

If we assume that f3; is bounded as ¢’ approaches zero, the from Eq.
1 we get

utt = yr (2)
Thus, we preserve the exact solution which proves LP

Conversely, a change in u; is only possible if ﬂ,-TczST is not zero

This implies that §; is not bounded as ¢ approaches zero

Thus, boundedness of the distribution coefficient is a sufficient
condition for LP

For example, LDA distribution coefficients defined as §; = ZLZ* is
always between 0 and 1 (thus bounded)
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Proof For Flux-Difference Approach

@ Recall, the flux difference signal to node i is
_ Lz Ay -
i :g(fi—f)'”i“‘A-T (3)

@ where A.T are the artificial terms

@ Naturally, to prove LP, we would need to cast this approach in the
classic RD form which is

(p;—_lux—Diff — ,Bflux_Diff¢T (4)

where

o LF—f) m+AT _ (2ui —uj — uk)ki + AT

o7 o7 ®)
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Proof LP For Flux-Difference Approach

From Eq. 5, as ¢)7 approaches zero, ﬂi’:/“X_D"ff is unbounded

From the reasoning above, the flux-difference approach is not LP

However, from numerical experiments we know that the
flux-difference approach is 2nd order accurate and should be LP

@ We first conclude that we can't interpret the flux-difference approach
as done in Eq. 4

@ To prove LP for flux-difference approach, we need an alternate
approach
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Proof LP For Flux-Difference Approach

@ At steady state, the sum of signals to node i from all the triangular
elements that share the node is,

> ol =0 (6)

T,ieT

e Introducing a smooth function ® € C! and take the product with Eq.
6 as well as taking the summation over all nodes, the following
relation is obtained.

D i D ol =0 (7)

T,ieT
@ Recall for a triangular element T,
2¢7:// . FhdA. (8)
ieT T
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Proof LP For Flux-Difference Approach

@ Introduce for a triangular element T with vertices/nodes i, j, k a
function ®7 defined as 7 = w and take the product with
Eq. 8 which results in,

Z¢TZ¢, Zch/ V- FhdA. (9)
ieT
Now subtractlng the terms in Eq. 7 from Eq. 9, we obtain

Zch//v FrdA+Y "N (0 —o7) - ¢] = (10)

T ieT

To obtain second-order accuracy at steady state, the second terms in
Eq. 10 must be of order h?. Which is,

d(@i-oT) (D> )= (11)
i T,ieT

This is true when the signal ¢ is O(h®) since for a bounded domain
the number of nodes (3~,) is O(h~2) and (®; — ®T) is O(h).
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Proof LP For Flux-Difference Approach

@ As an example, signal for classic LP(bounded distribution coefficients

Bi) RD is of the form,
o] N =BT (12)

@ Recall that ¢T = ¢ F - Adl and approximating the flux with
trapezoidal rule which is O(h?) and taking the product with the
scaled normals (O(h)) gives the ¢7 = O(h3)

e Thus, with bounded coefficients, the signal will be O(h3).

@ For the flux-difference approach, the baseline approach ignoring F
where the residual over an element is evaluated using a trapezoidal
rule and is of the form,

1. 1. 1o
¢T:—f-.n,-+§ﬂ'nj+§fk'nk‘ (13)

e From Eq. 13 above, it is clear that residual, #” = O(h3). The signal
to the nodes will be,

1
¢I,J k — I,J k nl,j k- (14)
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Proof LP For Flux-Difference Approach

@ Since each signal is a portion of the total residual, ¢, thus each
signal will also be O(h?)

@ The basic flux-difference approach is second-order accurate

o With the choice of f* being the arithmetic average, the overall
second-order accuracy is also preserved

o This because f* is defined as arithmetic average of the average of the
fluxes along each edge which is,

:% (;(f,- + )+ %(ﬂ- + i) + %(fk + f,-))

=5 (F+F+4) (15)

]F'*

o From Eq. 15 above, since f* is constructed as an arithmetic average
of using trapezoidal rule (which is 0(h?)) along each edge, £* will be
O(h?)

o As a result, f* preserves the order of accuracy the full flux-difference
approach is LP on arbitrary grids.
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Proof For Artificial Signals

@ The viscous signal can be written as ,

[ 2 v o
O s = A mj(uj — uj) + A me(ui — ug). (16)
@ Now, writing the artificial signals in the same form by setting 5 =0
we obtain,

o = a(uj — uj) + y(ui — uk). (17)

@ Comparing Eq. 16 and Eq. 17, we conclude that the artificial signals
are a Galerkin type discretization since the terms multiplying (u; — u;)
(which are the dot product of the scaled normals) in Eq. 16 are of
O(h?) while a, vy are of O(h?)

@ This similar form leads to the conclusion that since the Galerkin
discretization is second-order, the artificial signal too will be
second-order accurate
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Thank You
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