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Basic Proof

The Linear Preserving (LP) property requires the scheme to preserve
the exact steady state solution when the solution varies linearly in
space for arbitrary grids

A scheme that is LP will guarantee second-order accuracy for spatial
discretization at steady state

Recall the update for node i

un+1
i = un

i +
∆t

Si

∑
T∈Vi

βT
i φ

T (1)

where φT is the total residual and βi is the distribution coefficient
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Basic Proof 2

At steady state, is we substitute the exact solution at the nodes, we
get φT = 0

If we assume that βi is bounded as φT approaches zero, the from Eq.
1 we get

un+1
i = un

i (2)

Thus, we preserve the exact solution which proves LP

Conversely, a change in ui is only possible if βT
i φ

T is not zero

This implies that βi is not bounded as φT approaches zero

Thus, boundedness of the distribution coefficient is a sufficient
condition for LP

For example, LDA distribution coefficients defined as βi =
k+

i∑
k+ is

always between 0 and 1 (thus bounded)
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Proof For Flux-Difference Approach

Recall, the flux difference signal to node i is

φFD
i =

1

2
(~fi − ~f ∗) · ~ni + A.T (3)

where A.T are the artificial terms

Naturally, to prove LP, we would need to cast this approach in the
classic RD form which is

φFlux−Diff
i = βFlux−Diff

i φT (4)

where

βFlux−Diff
i =

1
2 (~fi − ~f ∗) · ~ni + A.T

φT
=

(2ui − uj − uk)ki + A.T

φT
(5)
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Proof LP For Flux-Difference Approach

From Eq. 5, as φT approaches zero, βFlux−Diff
i is unbounded

From the reasoning above, the flux-difference approach is not LP

However, from numerical experiments we know that the
flux-difference approach is 2nd order accurate and should be LP

We first conclude that we can’t interpret the flux-difference approach
as done in Eq. 4

To prove LP for flux-difference approach, we need an alternate
approach
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Proof LP For Flux-Difference Approach

At steady state, the sum of signals to node i from all the triangular
elements that share the node is,∑

T ,i∈T

φT
i = 0. (6)

Introducing a smooth function Φ ∈ C 1 and take the product with Eq.
6 as well as taking the summation over all nodes, the following
relation is obtained. ∑

i

Φi ·
∑

T ,i∈T

φT
i = 0 (7)

Recall for a triangular element T ,∑
i∈T

φT
i =

∫∫
T

~∇ · ~F hdA. (8)

Vishal Singh (USM) RD Schemes July 20, 2017 7 / 12



Proof LP For Flux-Difference Approach

Introduce for a triangular element T with vertices/nodes i , j , k a

function ΦT defined as ΦT =
Φi +Φj +Φk

3 and take the product with
Eq. 8 which results in,∑

T

ΦT
∑
i∈T

φT
i =

∑
T

ΦT

∫∫
T

~∇ · ~F hdA. (9)

Now subtracting the terms in Eq. 7 from Eq. 9, we obtain∑
T

ΦT

∫∫
T

~∇ · ~F hdA +
∑

T

∑
i∈T

(Φi − ΦT ) · φT
i = 0 (10)

To obtain second-order accuracy at steady state, the second terms in
Eq. 10 must be of order h2. Which is,∑

i

(Φi − ΦT ) · (
∑

T ,i∈T

φT
i ) = O(h2) (11)

This is true when the signal φT
i is O(h3) since for a bounded domain

the number of nodes (
∑

i ) is O(h−2) and (Φi − ΦT ) is O(h).
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Proof LP For Flux-Difference Approach

As an example, signal for classic LP(bounded distribution coefficients
βi ) RD is of the form,

φT ,LDA
i = βiφ

T . (12)

Recall that φT =
∮
~F · n̂dl and approximating the flux with

trapezoidal rule which is O(h2) and taking the product with the
scaled normals (O(h)) gives the φT = O(h3)
Thus, with bounded coefficients, the signal will be O(h3).
For the flux-difference approach, the baseline approach ignoring ~f ∗

where the residual over an element is evaluated using a trapezoidal
rule and is of the form,

φT =
1

2
~fi · ~ni +

1

2
~fj · ~nj +

1

2
~fk · ~nk . (13)

From Eq. 13 above, it is clear that residual, φT = O(h3). The signal
to the nodes will be,

φi ,j ,k =
1

2
~fi ,j ,k · ~ni ,j ,k . (14)
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Proof LP For Flux-Difference Approach

Since each signal is a portion of the total residual, φT , thus each
signal will also be O(h3)
The basic flux-difference approach is second-order accurate
With the choice of ~f ∗ being the arithmetic average, the overall
second-order accuracy is also preserved
This because ~f ∗ is defined as arithmetic average of the average of the
fluxes along each edge which is,

~f ∗ =
1

3

(
1

2
(~fi + ~fj ) +

1

2
(~fj + ~fk ) +

1

2
(~fk + ~fi )

)
=

1

3

(
~fi + ~fj + ~fk

)
(15)

From Eq. 15 above, since ~f ∗ is constructed as an arithmetic average
of using trapezoidal rule (which is 0(h2)) along each edge, ~f ∗ will be
O(h2)
As a result, ~f ∗ preserves the order of accuracy the full flux-difference
approach is LP on arbitrary grids.
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Proof For Artificial Signals

The viscous signal can be written as ,

φT
i ,vis =

ν

4AT
~ni · ~nj (uj − ui ) +

ν

4AT
~ni · ~nk (ui − uk ). (16)

Now, writing the artificial signals in the same form by setting β = 0
we obtain,

φart
i = α(uj − ui ) + γ(ui − uk ). (17)

Comparing Eq. 16 and Eq. 17, we conclude that the artificial signals
are a Galerkin type discretization since the terms multiplying (uj − ui )
(which are the dot product of the scaled normals) in Eq. 16 are of
O(h2) while α, γ are of O(h2)

This similar form leads to the conclusion that since the Galerkin
discretization is second-order, the artificial signal too will be
second-order accurate
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Thank You
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